

Selecting risk management strategies for smallholder farmers in Northern Ghana

Johannes Schuler, Opeyemi O. Adelesi, Yean-Uk Kim, Madina Diancoumba, Alhassan Lansah Abdulai, Heidi Webber

Introduction

- ☐ Conditions for smallholder production in Northern Ghana:
 - Variability in seasonal and interannual rainfall,
 - Acute vulnerability to food price spikes,
 - Self-consumption of most crops (mainly maize).
- ☐ Problem statement: Investing in sustainable management options is costly, resulting in soil nutrient mining.
- ☐ Objectives of this study:
 - Comparing different fertilizer strategies for maize on yield distributions and cost structures,
 - Reflecting on farmers' risk management strategies.

Background

- Main threats perceived by farmers:
 - prolonged droughts,
 - prolonged floods,
 - financial restrictions (e.g., buying inputs).
- ☐ Risk management options by farmers (examples):
 - Adjust planting date,
 - Drought-resistant crops,
 - Off-farm income,
 - Diversification (focus on livestock),
 - Reduce the intensity of production,
 - Weather index insurance (WII).
- Adelesi et al. (2024) showed the advantage of WII for most smallholder farmers based on bio-economic farm modelling. How is the profitability at single crop level for different fertilizer rates for maize?

Figure 1: Field experiments carried out by SARI on different nutrient management options (Photo: H. Amankwah)

Methods and data

- Based on results from SIMPLACE crop modelling focusing on different fertilizer rates for maize,
- Management data from a farm survey (CASCAID) in three districts in Northern Ghana,
- Additional expert knowledge for correcting outliers and missing data,
- Comparison of yield distributions, cost structures and efficiencies.

Results

Crop yields:

Different fertilizer application rates result in different yield levels and cost structures.

Table 1: Maize yields simulated for different fertilizer rates by SIMPLACE. The management data was derived from farmer survey (data source: CASCAID project)

		Maize-low	Maize- medium	Maize-high
Average yield (modelled)	kg/ha	616	1826	2769
std dev	kg/ha	126	408	682
Median	kg/ha	623	1907	2961
Labour requirements	man day/ha	55	155	206
Input cost	cedis/ha	424	1552	3002
Labour input/output	man day/kg	0.09	0.08	0.07
input cost/output	cedis/kg	0.69	0.85	1.08

Crop yield variability:

Simulation of different fertilizer application rates resulted in substantial variation in yield levels and distribution patterns (Fig. 2).

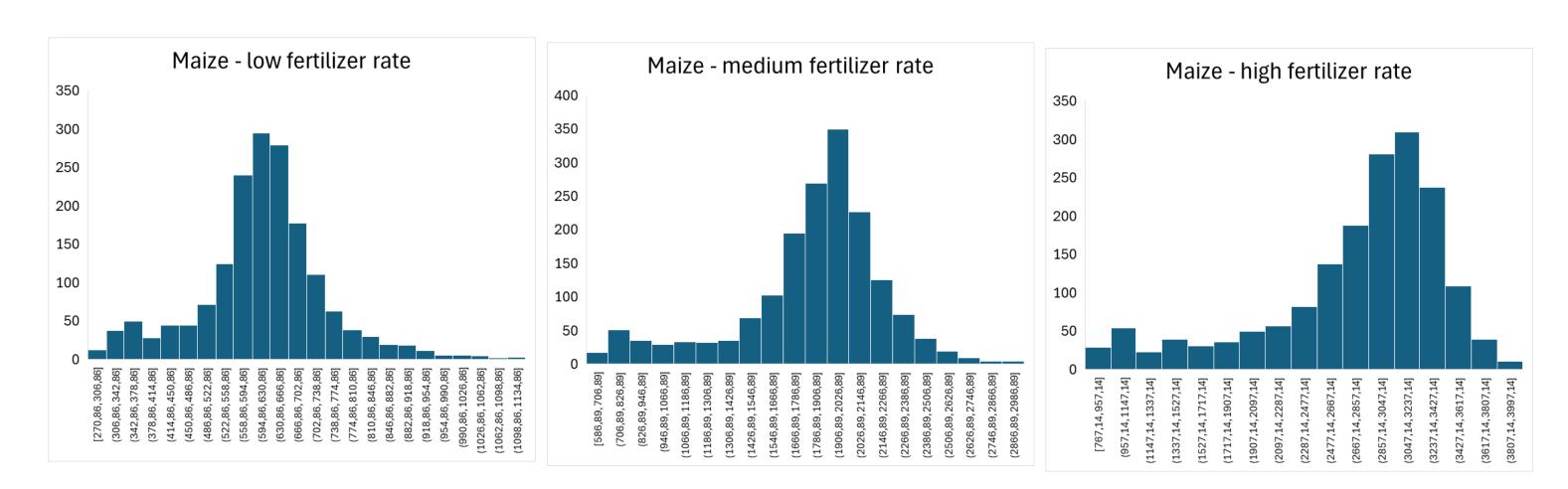


Figure 2: Yield histograms for different fertilizer rates

Discussion

- Costs: relative input costs per kg of output increase with fertilizer applications,
- Labour input slightly decreases with higher fertilizer rates,
- Yield distributions tend to make production riskier when applying more fertilizers,
- Financially constrained farmers are likely to choose lowintensity options to avoid losses,
- Results explain unsustainable fertilizer use levels for smallholder farmers.

Further steps

Development of a decision support tool considering:

- risk sources (yield risk caused by weather),
- Risk mitigation strategies (insurance, farm practices).

References:

Adelesi, O. O., Kim, Y. U., Schuler, J., Zander, P., Njoroge, M. M., Waithaka, L., ... & Webber, H. (2024). The potential for index-based crop insurance to stabilize smallholder farmers' gross margins in Northern Ghana. Agricultural Systems, 221, 104130.

