

Investigating roles of sustainable intensification practices in Ghana cropping systems using crop modelling

Thuy Huu Nguyen¹, Bright Sallah Freduah², Amit Srivastava^{1, 6}, Jesse Naab⁴, Madina Diancoumba³, Dilys Sefakor MacCarthy², Kwasi Godfried Samuel Adiku⁵, Heidi Webber³, Thomas Gaiser¹

¹ Crop Science Group, Institute for crop science and resource conservation (INRES), University of Bonn, Germany; ² Soil and Irrigation Research Centre, School of Agriculture, University of Ghana, Ghana; Integrated Crop System Analysis and Modeling, Leibniz Center for Agricultural Landscape Research (ZALF), Germany; Savana Agricultural Research Institute, Wa, Ghana; Department of Soil Science, School of Agriculture, University of Ghana, Ghana; ⁶ Multi-Scale Modelling and Forecasting, Leibniz Center for Agricultural Landscape Research (ZALF), Germany

Residue retention: 0, 25, 75, 100%

INTRODUCTION

- Highly spatial and temporal heterogeneity of soil, seasonal climatic characteristics, and • local inputs
- Upscaling of sustainable intensification (SI) practices from specific locations to regional scales
- Comprehensive field trials which are often lacking in Africa
- Dynamic crop modeling systems incorporating SI practices [e.g. crop residue retention (R) or varied nitrogen (N) is used to investigate the effects of those SI practices on crop yield and soil nutrients

RESULTS

1. Modeling calibration

Bias errors of yield were at 0.314 and 0.328 ton ha⁻¹ for LINTUL5 and APSIM, respectively.

2. Modelling validation

 Two models overestimated biomass and yield in 2011 and 2012, with bias errors around 0.9 ton ha⁻¹, while underestimating grain yield by around 0.5 ton ha⁻¹ in 2013.

MATERIALS AND METHODS

- **Experimental data:**
- Locations: Northern Ghana
- Field trial data: Naab et al., (2017)
- Cropping system: sole maize
- Growing season: 2010, 2011, 2012, 2013
- Soil types: Ferric soil
- **Crop models:**
- SIMPLACE <LINTUL5> and APSIM
- Crop practices scenarios: crop residue retention (R): 0, 25%, 75%, and 100% & chemical N: 0, 30, 60, and 90 kg N ha⁻¹

HIGHLIGHTS

- Comparison to N60-R100, adding reducing 30 kg N ha⁻¹ or reducing residue to soil do not have strong effects on grain yield for the selected trial.
- Modeling differences and uncertainty are high when lack of observed data.

RESULTS

2. Modelling validation (continued)

Depletion of total N after 04 seasons was high. Two models overestimated total N in 2013.

3. Modelling sensitivity analysis

- change (RYC) yield Relative due to chemical N input was larger than due to residue retention.
- RYC simulated by APSIM was higher (10-20%) than simulated RYC by LINTUL5.
- Adding chemical N input (90 kg) increased 30-60% grain yield compared to N0-R0.

Difference of APSIM and LINTUL5 models was due to differrence in initial set-up for N60-R100.

OUTLOOK

Needs to add more sensitivity analysis with different soil types, P fertilizer levels, cropping systems (maize-soybean rotation, intercropping etc...)

Modelling workflow

4 years x 4 N levels x 4 Residue retention = 64 simulations

RESULTS

2010, 2011, 2012,

2013)

Average RYC compated to N60-R100 (considred as current SI practices in farmer fields) of different residue retention scenarios in 2012

Model	Scenario N	RYC
	(kg ha-1)	(%)
APSIM	N0	-98
	N30	-17
	N60	-8
	N90	6
LINTUL5	N0	-31
	N30	-14
	N60	-6
	N90	8

- Comparing N60-R100 with N0-R0, yield was reduced by average of 31% (LINTUL5) and almost 98% (APSIM).
- Compared to N60-R100, RYC was not much when increase/decrease of 30 kg N ha⁻¹.

