

Crop residue management: opportunities and challenges for soil fertility

Dorcas Alame Sanginga 1, Benjamin Abugri 2 & Michael Bruntrup 3

1.Institute of Crop Science and Resource Conservation (INRES), University of Bonn
2.Forum for Agricultural Research in Africa (FARA)
3.German Institute of Development and Sustainability (IDOS)

Context

- Enhancing soil health demands the combined application of organic and mineral inputs to maintain soil
 quality and boost crop yields (Vanlauwe et al., 2010).
- Effective soil fertilization typically involves applying 4–5 t/ha of organic fertilizer (Quansah, 2010).
- Crop residues represent a valuable source of organic fertilizer.
- Understanding farmers' perceptions and their use of crop residues is key to creating effective soil fertility interventions.

Methods

- Field observation
- Survey with 97 farmers in 3 districts of Northern Ghana (Savelugu, Tolon and Mion)

Insights

Figure 1: Crops cultivated

Figure 2: Crop residue management models and competing uses

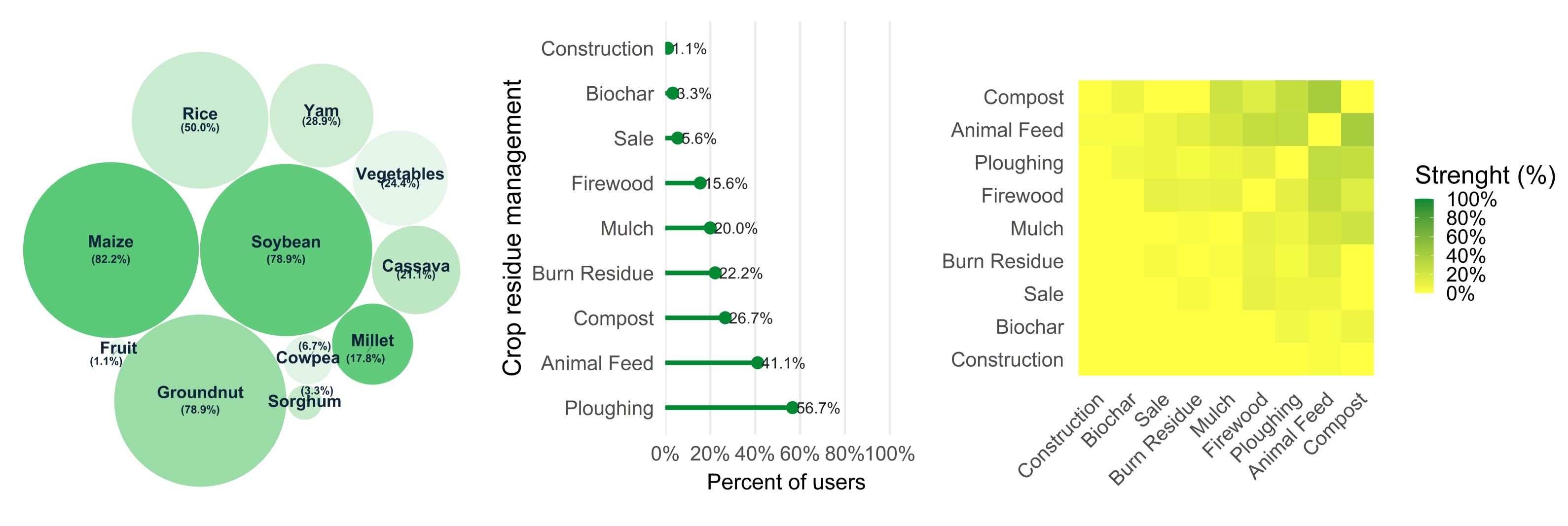


Figure 3: Farmers' perceived benefits, challenges and ease of use

Strenght **Benefits Challenges** 100% 75% Lack of equipment or tools 50% 25% Improves soil fertility High labor 0% Increases crop yield Bush fire Less chemical fertilizer Bush burners Improve soil moisture retention Lack of training on good practices Animals Reduces soil erosion No perceived benefits Competing uses for residues **Easy 22.1% Hard 77.9%**

Enabling factors

- Equipment and tools
- Mechanization and transport
- Crop-livestock management
- Training on different models
- Field demonstration


References:

1. Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. *Outlook on Agriculture*, 39(1), 17–24. https://doi.org/10.5367/00000010791169998
2. Quansah, G. W. (2010). Effect of organic and inorganic fertilizers and their combinations on the growth and yield of maize in the semi-deciduous forest zone of Ghana (Doctoral dissertation, KNUST).

Hochschule

Bonn-Rhein-Sieg

University of Applied Sciences

